Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronoxylomannans with a computer-simulated artificial neural network.
نویسندگان
چکیده
The complete assignment of the proton chemical shifts obtained by nuclear magnetic resonance (NMR) spectroscopy of de-O-acetylated glucuronoxylomannans (GXMs) from Cryptococcus neoformans permitted the high-resolution determination of the total structure of any GXM. Six structural motifs based on an alpha-(1-->3)-mannotriose substituted with variable quantities of 2-O-beta- and 4-O-beta-xylopyranosyl and 2-O-beta-glucopyranosyluronic acid were identified. The chemical shifts of only the anomeric protons of the mannosyl residues served as structure reporter groups (SRG) for the identification and quantitation of the six triads present in any GXM. The assigned protons for the mannosyl residues resonated at clearly distinguishable positions in the spectrum and supplied all the information essential for the assignment of the complete GXM structure. This technique for assigning structure is referred to as the SRG concept. The SRG concept was used to analyze the distribution of the six mannosyl triads of GXMs obtained from 106 isolates of C. neoformans. The six mannosyl triads occurred singularly or in combination with one or more of the other triads. The identification and quantitation of the SRG were simplified by using a computer-simulated artificial neural network (ANN) to automatically analyze the SRG region of the one-dimensional proton NMR spectra. The occurrence and relative distribution of the six mannosyl triads were used to chemotype C. neoformans on the basis of subtle variations in GXM structure determined by analysis of the SRG region of the proton NMR spectrum by the ANN. The data for the distribution of the six SRGs from GXMs of 106 isolates of C. neoformans yielded eight chemotypes, Chem1 through Chem8.
منابع مشابه
Cryptococcus Neoformans Chemotyping by Quantitative Analysis of H-1 Nuclear Magnetic Resonance Spectra of Glucuronoxylomannans with a Computer-Simulated Artificial Neural Network
متن کامل
Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks.
Artificial networks can be used to identify hydrogen nuclear magnetic resonance (1H-NMR) spectra of complex oligosaccharides. Feed-forward neural networks with back-propagation of errors can distinguish between spectra of oligosaccharides that differ by only one glycosyl residue in twenty. The artificial neural networks use features of the strongly overlapping region of the spectra (hump region...
متن کاملEvaluating Dye Concentration in Bicomponent Solution by PCA-MPR and PCA-ANN Techniques
This paper studies the application of principal component analysis, multiple polynomial regression, and artificial neural network ANN techniques to the quantitative analysis of binary mixture of dye solution. The binary mixtures of three textile dyes including blue, red and yellow colors were analyzed by PCA-Multiple polynomial Regression and PCA-Artificial Neural network PCA-ANN methods. The o...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical and diagnostic laboratory immunology
دوره 5 2 شماره
صفحات -
تاریخ انتشار 1998